第九关
试卷总分:100 得分:100
1.数学建模是指根据具体问题,在一定假设下使(* ),建立起适合该问题的数学模型,求出模型的解,并对它进行检验的全过程。
A.问题化简
B.条件明朗
C.问题归类
D.条件简化
2.根据学生掌握数学思想方法的过程有潜意识阶段、明朗化阶段和深刻理解阶段等三个阶段,可相应地将小学数学思想方法教学设计成(* )、(* )、(* )三个阶段。
A.多次孕育? 初步理解? 简单应用
B.思考?? 求解?? 应用
C.多次分析?? 初步理解* 简单应用
D.多次分析?? 简化求解* 深化应用
3.数学模型可以分为三类:(1)概念型数学模型;(2)(* );(3)结构型数学模型。
A.实验型数学模型
B.推理型数学模型
C.逻辑型数学模型
D.方法型数学模型
4.数学模型具有(抽象性)、(准确性)、(* )、(* )特性。
A.公理性?? 归纳性
B.简单化?? 虚拟化
C.演绎性?? 预测性
D.演绎性?? 模糊性
5.数学学科的新发展——分形几何,其分形的思想就是将某一对象的细微部分放大后,其(* )。
A.结构更加明朗
B.结构与原先一样
C.结构更加模糊
D.结构与原先不同
6.英国的牛顿和德国的莱布尼兹分别以(* )为背景用无穷小量方法建立了微积分。
A.数学与几何学
B.物理和坐标法
C.数学和解析几何
D.物理学和几何学
7.数学建模的基本步骤:弄清实际问题、(* )、建模、求解、检验。
A.化简问题
B.寻找条件
C.建立对应关系
D.深化问题
8.在建立数学模型的过程中,(* )这一环节是很重要的。
A.数学猜想
B.数学抽象
C.数学证明
D.数学模拟
9.已知某物体在运动过程中,其路程函数S(t)是二次函数,当时间t=0、1、2时,S(t)的值分别是0、3、8。求路程函数。
A.S(t)= t2+2t
B.S(t)=ds/dt+t2
C.S(t)=t3+3t
D.S(t)=∫083t2dt
10.鸽笼原理可叙述为:若n+1只鸽子飞进n个笼子里,则至少有一个笼子里至少飞进(* )只鸽子。
A.3
B.2
C.4
D.1